반응형
# Tic Tac Toe (4/4)
# Created by netcanis on 2023/09/09.
#
# Minimax
# Alpha–beta pruning
# h5파일 로딩, 게임 GUI.
# 게임 테스트.

import tkinter as tk
from tkinter import messagebox
import random
import numpy as np
import tensorflow as tf
from keras.models import load_model

PLAYER = 1
AI = -1
H5_FILE_NAME = "ttt_model.h5"

class TTT:
    def __init__(self):
        self.window = tk.Tk()
        self.window.title("TTT")

        self.init_neural_network()
        self.start_game()

    def init_game(self):
        self.board = [[0 for _ in range(3)] for _ in range(3)]
        self.buttons = [[None for _ in range(3)] for _ in range(3)]
        self.sequence = 0
        self.game_over = False
        self.turn_player = random.choice([PLAYER, AI])
        
        for row in range(3):
            for col in range(3):
                self.buttons[row][col] = tk.Button(
                    self.window,
                    text=' ',
                    font=("Helvetica", 24),
                    height=1,
                    width=1,
                    command=lambda r=row, c=col: self.make_move(r, c, PLAYER),
                )
                self.buttons[row][col].grid(row=row, column=col)

    def find_empty_cells(self):
        empty_cells = []
        for row in range(3):
            for col in range(3):
                if self.board[row][col] == 0:
                    empty_cells.append((row, col))
        return empty_cells

    def check_winner(self, board, player):
        for row in board:
            if all(cell == player for cell in row):
                return True
        for col in range(3):
            if all(board[row][col] == player for row in range(3)):
                return True
        if all(board[i][i] == player for i in range(3)) or all(board[i][2 - i] == player for i in range(3)):
            return True
        return False

    def is_board_full(self, board):
        return all(cell != 0 for row in board for cell in row)

    def make_move(self, row, col, turn_player):
        if self.board[row][col] == 0:
            self.board[row][col] = turn_player
            self.updateBoardUI(row, col, turn_player)
            
            self.sequence += 1

            if self.check_winner(self.board, turn_player):
                self.game_over = True
            elif self.is_board_full(self.board):
                self.game_over = True
                self.turn_player = 0
            else:
                self.turn_player *= -1

    def wait_for_player_move(self):
        player_move_var = tk.IntVar()
        for row in range(3):
            for col in range(3):
                self.buttons[row][col]["command"] = lambda r=row, c=col: player_move_var.set(r * 3 + c)
        self.window.wait_variable(player_move_var)

        player_move = player_move_var.get()
        row = player_move // 3
        col = player_move % 3
        self.make_move(row, col, PLAYER)
    
    def wait_for_player_restart(self):
        response = messagebox.askyesno("Game Over", "Do you want to play again?")
        if response:
            self.start_game()
        else:
            self.window.quit()
            
    def updateBoardUI(self, row, col, turn_player):
        self.buttons[row][col]["text"] = 'O' if turn_player == 1 else 'X'
        self.buttons[row][col]["state"] = "disabled"
        self.window.update()

    def random_move(self, turn_player):
        if self.game_over == True:
            return -1, -1
        row, col = random.choice(self.find_empty_cells())
        self.make_move(row, col, turn_player)
        return row, col

    def init_neural_network(self):
        self.model = tf.keras.Sequential([
            tf.keras.layers.Dense(27, activation='relu', input_shape=(9,)),
            tf.keras.layers.Dense(9, activation='softmax')
        ])

        self.model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

    def predicts(self, input_data):
        if isinstance(input_data, list):
            input_data = np.array(input_data)

        prediction = self.model.predict(input_data.reshape(1, -1))
        sorted_indices = np.argsort(prediction, axis=-1)[:, ::-1]

        index = 0
        for i in sorted_indices[0]:
            if input_data.shape == (9,):
                if input_data[i] == 0:
                    index = i
                    break
            elif input_data.shape == (3, 3):
                row = i // 3
                col = i % 3
                if input_data[row][col] == 0:
                    index = i
                    break

        #max_value = prediction[0, index]
        return index

    def start_game(self):
        self.init_game()
        self.model = load_model(H5_FILE_NAME)
        
        while not self.game_over:
            if self.turn_player == AI:
                next_move = self.predicts(self.board)
                row = next_move // 3
                col = next_move % 3
                self.make_move(row, col, self.turn_player)
            else:
                self.wait_for_player_move()
        
        if self.turn_player == AI:
            messagebox.showinfo("Game Over", "AI wins!")
        elif self.turn_player == PLAYER:
            messagebox.showinfo("Game Over", "Player wins!")
        else:
            messagebox.showinfo("Game Over", "It's a draw!")
        
        self.wait_for_player_restart()
                    
    def run(self):
        self.window.mainloop()

if __name__ == "__main__":
    game = TTT()
    game.run()

 

 

2023.09.12 - [AI,ML, Algorithm] - Tic-Tac-Toe 게임 제작 (1/4) - minimax

2023.09.12 - [AI,ML, Algorithm] - Tic-Tac-Toe 게임 제작 (2/4) - alpha–beta pruning

2023.09.12 - [AI,ML, Algorithm] - Tic-Tac-Toe 게임 제작 (3/4) - 머신러닝 훈련 데이터 생성

2023.09.12 - [AI,ML, Algorithm] - Tic-Tac-Toe 게임 제작 (4/4) - 머신러닝을 이용한 게임 구현

 

 

 

 

반응형
블로그 이미지

SKY STORY

,