반응형

이제 머신러닝을 위한 대량의 훈련 데이터를 만들어보자.

플레이어와 AI는 모두 랜덤 모드로 수를 연산하도록 설정했다. 수를 놓을 때 3자리 이하인 부분에서는,

AI는 점수를 계산하여 높은 점수의 자리에 돌을 놓도록 했다. 플레이어는 3자리 이하인 부분에서 인접한 빈자리 중 랜덤한 위치에 돌을 놓도록 난이도에 약간의 차이를 두었다. 즉, 대부분 비기거나 AI가 좀더 잘 두도록 설정하였다.

#
# FIAR
# Created by netcanis on 2023/10/29.
#
# minimax
# alpha beta pruning
# 속도 개선 
# 훈련데이터 생성하여 머신러닝.

import pygame
import random
import numpy as np
import sys
import os
import tensorflow as tf
from keras.models import Sequential, load_model
import pandas as pd


BOARD_SIZE = 9  # (7,9,13,15,19)
CELL_SIZE = 40
MARGIN = 20
CLICK_RADIUS = CELL_SIZE // 2

BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0)
GRAY = (100, 100, 100)

NUM_ITEMS = (BOARD_SIZE * BOARD_SIZE)
PLAYER = 1
AI = -1

DIFFICULTY_LEVEL_AI = 4
DIFFICULTY_LEVEL_PLAYER = 2

AUTO_PLAY = True

if AUTO_PLAY == True:
    PLAYER_MODE = "RANDOM"#"MINIMAX"
    AI_MODE = "RANDOM"#"MINIMAX"
else:
    PLAYER_MODE = "MANUAL"
    AI_MODE = "RANDOM"#"ML"#"MINIMAX"
    
NUM_EPISODES = 20000
CSV_FILE_NAME = "fiar_training_data.csv"
H5_FILE_NAME = "fiar_model.h5"


class FIAR:
    def __init__(self):
        self.init_game()
    
    def init_game(self):
        self.episode = 0
        
        pygame.init()
        pygame.display.set_caption("FIAR")
        w = (BOARD_SIZE-1) * CELL_SIZE + 2 * MARGIN
        h = (BOARD_SIZE-1) * CELL_SIZE + 2 * MARGIN
        self.screen = pygame.display.set_mode((w, h))

        self.font = pygame.font.Font(None, CELL_SIZE-4)
        
    def reset_game(self):
        self.board = np.zeros((BOARD_SIZE, BOARD_SIZE), dtype=int)
        self.sequences = np.zeros((BOARD_SIZE, BOARD_SIZE), dtype=int)
        self.sequence = 0
        self.game_over = False
        self.turn_player = random.choice([PLAYER, AI]) if AUTO_PLAY == True else PLAYER
        
        self.draw_board(self.screen)
        pygame.display.flip()
        
    def find_empty_cells(self):
        empty_cells = []
        for row in range(BOARD_SIZE):
            for col in range(BOARD_SIZE):
                if self.board[row][col] == 0:
                    empty_cells.append((row, col))
        random.shuffle(empty_cells)
        return empty_cells
    
    def find_adjacent_empty_cells(self):
        empty_cells = []
        empty_cells2 = []
        for row, col in self.find_empty_cells():
            for dr in [-1, 0, 1]:
                for dc in [-1, 0, 1]:
                    new_row, new_col = row + dr, col + dc
                    if 0 <= new_row < BOARD_SIZE and 0 <= new_col < BOARD_SIZE and self.board[new_row][new_col] != 0:
                        # 수를 놓았을 경우 연결된 수가 3개 이상이고 5개를 놓을 수 있는 자리일 경우만 배열에 추가.
                        self.board[row][col] = self.turn_player
                        c1, c2, _ = self.evaluate_position(self.board, row, col)
                        self.board[row][col] = -self.turn_player
                        c3, c4, _ = self.evaluate_position(self.board, row, col)
                        self.board[row][col] = 0
                        if (c1 >= 3 and c2 >= 5) or (c3 >= 3 and c4 >= 5):
                            empty_cells2.append((row, col))

                        empty_cells.append((row, col))
                        break
                    
        if len(empty_cells2) > 0:
            return empty_cells2
        
        return empty_cells
    
    def evaluate_position(self, board, row, col):
        def check_direction(dx, dy):
            count = 1
            r, c = row + dx, col + dy
            while 0 <= r < len(board) and 0 <= c < len(board[0]) and board[r][c] == board[row][col]:
                count += 1
                r += dx
                c += dy
            return count
        
        def check_direction_with_blank(dx, dy):
            count = 1
            r, c = row + dx, col + dy
            while 0 <= r < len(board) and 0 <= c < len(board[0]) and (board[r][c] == board[row][col] or board[r][c] == 0):
                count += 1
                r += dx
                c += dy
            return count
        
        total_count1 = 0
        total_count2 = 0
        total_score = 0
        directions = [(0, 1), (1, 0), (1, 1), (-1, 1)]
        for dx, dy in directions:
            count1 = check_direction( dx,  dy)
            count2 = check_direction(-dx, -dy)
            dir_count1 = count1 + count2 - 1
            count3 = check_direction_with_blank( dx,  dy)
            count4 = check_direction_with_blank(-dx, -dy)
            dir_count2 = count3 + count4 - 1
            total_count1 = max(total_count1, dir_count1)
            total_count2 = max(total_count2, dir_count2)
            # 각 방향별로 연결된 돌의 수가 3자리 이상이고 5개이상 놓을 수 있는 자리라면 점수를 추가한다.
            # 즉, 연결되는 돌이 교차하는 위치라면 점수가 높게 나온다.
            if dir_count1 == 4 and dir_count2 >= 5:
                total_score += dir_count1 * 4
            elif dir_count1 >= 3 and dir_count2 >= 5:
                total_score += dir_count1 * 2
            elif dir_count1 >= 2 and dir_count2 >= 5:
                total_score += dir_count1
                
        return total_count1, total_count2, total_score
    
    def check_winner(self, board, row, col):
        if board[row][col] == 0:
            return False
        
        def check_direction(dx, dy):
            count = 1
            r, c = row + dx, col + dy
            while 0 <= r < len(board) and 0 <= c < len(board[0]) and board[r][c] == board[row][col]:
                count += 1
                r += dx
                c += dy
            return count

        directions = [(0, 1), (1, 0), (1, 1), (-1, 1)]
        for dx, dy in directions:
            count1 = check_direction(dx, dy)
            count2 = check_direction(-dx, -dy)
            total_count = count1 + count2 - 1
            if total_count == 5:
                return True

        return False
    
    def is_board_full(self, board):
        return all(cell != 0 for row in board for cell in row)

    def random_move(self, player):
        if self.game_over:
            return -1, -1
        
        best_move = None
        best_score = 0
        
        best_move = self.make_optimal_move(player)
        if best_move == None:
            if player == AI:
                empty_cells = self.find_adjacent_empty_cells()
                for row, col in empty_cells: 
                    self.board[row][col] = player
                    s1 = self.evaluate_position(self.board, row, col)[2]
                    if s1 > best_score:
                        best_score = s1
                        best_move = (row, col)
                    self.board[row][col] = -player
                    s2 = self.evaluate_position(self.board, row, col)[2]
                    if s2 > best_score:
                        best_score = s2
                        best_move = (row, col)
                    self.board[row][col] = 0
                
                if best_score == 0:
                    best_move = random.choice(self.find_empty_cells())
            else:
                best_move = random.choice(self.find_empty_cells())
        
        self.make_move(best_move[0], best_move[1], player)
        
        return best_move

    def minimax_move(self, player):
        if self.game_over:
            return -1, -1
        row, col = self.find_best_move(player)
        self.make_move(row, col, player)
        return row, col

    def make_move(self, row, col, player):
        if self.board[row][col] == 0:
            self.board[row][col] = player
            
            self.sequence += 1
            self.sequences[row][col] = self.sequence
            
            #print(f"[{self.sequence}] <{player}> {row},{col}")
            
            if self.check_winner(self.board, row, col):
                self.game_over = True
            elif self.is_board_full(self.board):
                self.game_over = True
                self.turn_player = 0
            else:
                self.turn_player *= -1

    def minimax(self, depth, is_maximizing, alpha, beta, row2, col2):
        if self.is_board_full(self.board):
            return 0
        
        if is_maximizing:
            if self.check_winner(self.board, row2, col2):
                return -(NUM_ITEMS - depth + 1)
        else:
            if self.check_winner(self.board, row2, col2):
                return (NUM_ITEMS - depth + 1)
        
        if (self.turn_player == AI and depth >= DIFFICULTY_LEVEL_AI) or \
            (self.turn_player == PLAYER and depth >= DIFFICULTY_LEVEL_PLAYER):
            return 0
        
        if is_maximizing:# AI
            best_score = -float('inf')
            for row, col in self.find_adjacent_empty_cells():
                self.board[row][col] = AI
                score = self.minimax(depth + 1, False, alpha, beta, row, col)
                self.board[row][col] = 0
                best_score = max(best_score, score)
                alpha = max(alpha, best_score)
                if beta <= alpha:
                    break
            return best_score
        else:
            best_score = float('inf')
            for row, col in self.find_adjacent_empty_cells():
                self.board[row][col] = PLAYER
                score = self.minimax(depth + 1, True, alpha, beta, row, col)
                self.board[row][col] = 0
                best_score = min(best_score, score)
                beta = min(beta, best_score)
                if beta <= alpha:
                    break
            return best_score
    
    def make_optimal_move(self, player):
        # 0. The first one is random.
        if self.sequence == 0:
            row = BOARD_SIZE // 2 + random.randint(-2, 2)
            col = BOARD_SIZE // 2 + random.randint(-2, 2)
            return (row, col)
        
        empty_cells = self.find_adjacent_empty_cells()

        # 1. ai turn: 5
        for row, col in empty_cells: 
            self.board[row][col] = player
            if self.check_winner(self.board, row, col):
                self.board[row][col] = 0
                return (row, col)
            self.board[row][col] = 0
            
        # 2. player turn: 5
        for row, col in empty_cells: 
            self.board[row][col] = -player
            if self.check_winner(self.board, row, col):
                self.board[row][col] = 0
                return (row, col)
            self.board[row][col] = 0
        
        if (player == PLAYER and PLAYER_MODE == "RANDOM") or (player == AI and AI_MODE == "RANDOM"):
            # 3. The position that becomes 4 when placed
            for row, col in empty_cells: 
                self.board[row][col] = player
                c1, c2, _ = self.evaluate_position(self.board, row, col)
                self.board[row][col] = -player
                c3, c4, _ = self.evaluate_position(self.board, row, col)
                self.board[row][col] = 0
                if (c1 == 4 and c2 >= 5) or (c3 == 4 and c4 >= 5):
                    return (row, col)
                
            # 4. The position that becomes 3 when placed
            for row, col in empty_cells: 
                self.board[row][col] = player
                c1, c2, _ = self.evaluate_position(self.board, row, col)
                self.board[row][col] = -player
                c3, c4, _ = self.evaluate_position(self.board, row, col)
                self.board[row][col] = 0
                if (c1 == 3 and c2 >= 5) or (c3 == 3 and c4 >= 5):
                    return (row, col)
            
        return None
        
    def find_best_move(self, player):
        if AI_MODE == "RANDOM":
            best_move = self.random_move(player)
        else: # MINIMAX
            print(f"[{self.sequence+1}] <{player}> ...")
            optimal_move = self.make_optimal_move(player)
            if optimal_move != None:
                return optimal_move
        
            alpha = -float('inf')
            beta = float('inf')

            best_move = None
            best_score = -float('inf') if player == AI else float('inf')

            empty_cells = self.find_adjacent_empty_cells()
            for index, (row, col) in enumerate(empty_cells):
                self.board[row][col] = player
                is_maximizing = False if player == AI else True
                score = self.minimax(0, is_maximizing, alpha, beta, row, col)
                self.board[row][col] = 0
                
                if (player == AI and score > best_score) or (player == PLAYER and score < best_score):
                    best_score = score
                    best_move = (row, col)
                
                percentage = (index / len(empty_cells)) * 100
                print(f"    [{percentage:.1f}%] <{player}> {row},{col} -> {score}")
            
            print(f"    {best_move[0]},{best_move[1]} ({best_score})")
            
        return best_move
    
    def show_message(self, message, is_exit=False):
        popup = True
        while popup:
            for event in pygame.event.get():
                if event.type == pygame.QUIT:
                    pygame.quit()
                    sys.exit()

                if event.type == pygame.KEYDOWN:
                    if is_exit:
                        if event.key == pygame.K_y:
                            self.reset_game()
                            popup = False
                            return
                        elif event.key == pygame.K_n:
                            pygame.quit() 
                            sys.exit()
                    else:
                        popup = False
                        message = ""
                        self.draw_board(self.screen)
                        break
            
            text_lines = message.split('\n')
            for i, line in enumerate(text_lines):
                text = self.font.render(line, True, (128, 0, 128))
                text_rect = text.get_rect(topleft=(20, 20 + i * 20))
                self.screen.blit(text, text_rect)
            
            pygame.display.flip()
    
    def draw_board(self, screen):
        screen.fill(GRAY)
        for row in range(BOARD_SIZE):# draw horizontal lines
            pygame.draw.line(screen, BLACK, 
                            (0 * CELL_SIZE + MARGIN, row * CELL_SIZE + MARGIN), 
                            ((BOARD_SIZE-1) * CELL_SIZE + MARGIN, row * CELL_SIZE + MARGIN),
                            1)
            for col in range(BOARD_SIZE):# draw vertical lines
                if row == 0:
                    pygame.draw.line(screen, BLACK, 
                                    (col * CELL_SIZE + MARGIN, 0 * CELL_SIZE + MARGIN), 
                                    (col * CELL_SIZE + MARGIN, (BOARD_SIZE-1) * CELL_SIZE + MARGIN),
                                    1)

                x = col * CELL_SIZE + MARGIN
                y = row * CELL_SIZE + MARGIN

                if self.board[row][col] == PLAYER:
                    pygame.draw.circle(screen, BLACK, (x, y), CLICK_RADIUS)
                elif self.board[row][col] == AI:
                    pygame.draw.circle(screen, WHITE, (x, y), CLICK_RADIUS)
                
                seq_no = self.sequences[row][col] 
                if seq_no != 0:
                    if seq_no == self.sequence: 
                        pygame.draw.circle(screen, RED, (x, y), CLICK_RADIUS+1, 1)
                    
                    color = WHITE if self.board[row][col] == PLAYER else BLACK
                    text = self.font.render(f"{seq_no}", True, color)
                    text_rect = text.get_rect(center=(x, y))
                    screen.blit(text, text_rect)

    def handle_events(self):
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                self.game_over = True
            elif event.type == pygame.MOUSEBUTTONDOWN and not self.game_over and self.turn_player == PLAYER:
                x, y = pygame.mouse.get_pos()
                row = int(round((y - MARGIN) / CELL_SIZE))
                col = int(round((x - MARGIN) / CELL_SIZE))
                if 0 <= row < BOARD_SIZE and 0 <= col < BOARD_SIZE and self.board[row][col] == 0:
                    self.make_move(row, col, self.turn_player)
                    self.draw_board(self.screen)
                    pygame.display.flip()
                    
                    if self.turn_player == AI:
                        best_move = self.find_best_move(self.turn_player)
                        if best_move is not None:
                            row, col = best_move
                            self.make_move(row, col, self.turn_player)
                        
                        self.draw_board(self.screen)
                        pygame.display.flip()
                            
                    if self.game_over == True:
                        if self.turn_player == 0:
                            self.show_message("Game draw!")
                        else:
                            self.show_message(f"Game Over!\n{'Player' if self.turn_player == PLAYER else 'AI'} wins!")

    def init_ML(self):
        hidden_layer_count = 3 * NUM_ITEMS
        self.model = tf.keras.Sequential([
            tf.keras.layers.Dense(hidden_layer_count, activation='relu', input_shape=(NUM_ITEMS,)),
            tf.keras.layers.Dense(NUM_ITEMS, activation='softmax')
        ])
        self.model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
        
    def learning(self):
        if os.path.exists(CSV_FILE_NAME) == False:
            x_data, y_data = self.generate_training_data(NUM_EPISODES)

            self.save_data_to_csv(x_data, y_data, CSV_FILE_NAME)
            print(f"{CSV_FILE_NAME} 저장 완료")
        else:
            x_data, y_data = self.load_data_from_csv(CSV_FILE_NAME)
        
        self.model.fit(x_data, y_data, epochs=100, verbose=1)
        self.model.save(H5_FILE_NAME)
        
        test_results = self.model.evaluate(x_data, y_data)
        print(f"손실(Loss): {test_results[0]}")
        print(f"정확도(Accuracy): {test_results[1]}")
 
    def generate_training_data(self, num_games):
        x_data = []
        y_data = []
        
        while self.episode < num_games:
            self.reset_game()
            
            x = []
            y = []
            while True:
                row, col = self.get_next_move(self.turn_player)
                x.append(np.array(self.board).flatten())
                y.append(np.eye(NUM_ITEMS)[row * BOARD_SIZE + col])
                
                self.draw_board(self.screen)
                pygame.display.flip()
                
                if self.check_winner(self.board, row, col):
                    #print(f"{self.board}")
                    break
                if self.is_board_full(self.board):
                    #print(f"{self.board}")
                    break
                
            if self.turn_player != PLAYER:
                del x[-1]
                del y[0]
                x_data.extend(x)
                y_data.extend(y)
                self.episode += 1
                print(f"{self.episode}: {self.turn_player} win.")

        return np.array(x_data), np.array(y_data)

    def get_next_move(self, player):
        if (player == AI and AI_MODE == "MINIMAX") or (player == PLAYER and PLAYER_MODE == "MINIMAX"):
            return self.minimax_move(player)
        else:
            return self.random_move(player)
        
    def save_data_to_csv(self, x_data, y_data, file_name):
        x_data_flat = [x.flatten() for x in x_data]
        y_data_flat = [y.flatten() for y in y_data]
        data = {'x_data': x_data_flat, 'y_data': y_data_flat}
        df = pd.DataFrame(data)
        df.to_csv(file_name, index=False)

    def load_data_from_csv(self, file_name):
        df = pd.read_csv(file_name)
        x_data_flat = df['x_data'].apply(lambda x: np.fromstring(x[1:-1], sep=' '))
        y_data_flat = df['y_data'].apply(lambda x: np.fromstring(x[1:-1], sep=' '))
        x_data = np.array(x_data_flat.to_list())
        y_data = np.array(y_data_flat.to_list())
        return x_data, y_data
    
    
if __name__ == "__main__":
    game = FIAR()
    game.init_ML()
    game.learning()

 

2023.10.27 - [AI,ML, Algorithm] - Gomoku(Five in a Row, Omok) (1/5) - 기본 구현 (minimax, alpha-beta pruning)

2023.10.27 - [AI,ML, Algorithm] - Gomoku(Five in a Row, Omok) (2/5) - 속도 최적화 1차 (minimax 속도 개선)

2023.10.28 - [AI,ML, Algorithm] - Gomoku(Five in a Row, Omok) (3/5) - 속도 최적화 2차 (RANDOM모드 추가)

2023.10.29 - [AI,ML, Algorithm] - Gomoku(Five in a Row, Omok) (4/5) - 훈련 데이터 생성 및 학습

2023.10.29 - [AI,ML, Algorithm] - Gomoku(Five in a Row, Omok) (5/5) - 머신러닝으로 게임 구현

2023.11.03 - [AI,ML, Algorithm] - Gomoku(Five in a Row, Omok) (5/5) - 3x3 체크 추가

 

반응형
블로그 이미지

SKY STORY

,