'XOR'에 해당되는 글 2건

반응형

 

# neural network xor
#
# Created by netcanis on 2023/08/22.
#

import numpy as np
from graphviz import Digraph


'''
Input 0 -- w[0] -- Hidden 0 
          \       /  \      
           \     /   w2[0]  
           w[1] /       \    
              \/         Output
              /\        /
           w[2] \    w2[1]
            /    \    /
           /      \  /
Input 1 -- w[3] -- Hidden 1
'''


# XOR 학습 데이터
x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y_data = np.array([[0], [1], [1], [0]])

# 신경망 파라미터 초기화
input_size = 2
hidden_size = 2
output_size = 1
learning_rate = 0.1

# 가중치와 편향 초기화 - 평균이 0이고 표준편자가 1인 랜덤 값으로 행렬을 생성한다. (-1.0 ~ 1.0)
w1 = np.random.randn(input_size, hidden_size)   # 2x2 행렬
b1 = np.random.randn(hidden_size)               # 1차원 배열 (첫번째 은닉층의 편향 벡터. 편향은 각 은닉층 뉴런의 활성화 값을 조정하는 역할.)
w2 = np.random.randn(hidden_size, output_size)  # 2x1 행렬
b2 = np.random.randn(output_size)               # 1차원 배열 (출력층의 편향 벡터. 출력층의 뉴런들을 편향하여 최종 예측 값을 만듬.)

# 활성화 함수 (시그모이드)
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# 활성화 함수의 미분
def sigmoid_derivative(x):
    return x * (1 - x)

# 학습 시작
epochs = 10000
for epoch in range(epochs):
    # 순전파 (Forward Propagation)
    z1 = np.dot(x_data, w1) + b1
    a1 = sigmoid(z1)
    z2 = np.dot(a1, w2) + b2
    a2 = sigmoid(z2)

    # 오차 계산
    error = y_data - a2

    # 역전파 (Backpropagation)
    delta2 = error * sigmoid_derivative(a2)
    delta1 = np.dot(delta2, w2.T) * sigmoid_derivative(a1)

    # 가중치 업데이트
    w2 += np.dot(a1.T, delta2) * learning_rate
    w1 += np.dot(x_data.T, delta1) * learning_rate

# 예측 함수
def predict(input_data):
    z1 = np.dot(input_data, w1) + b1
    a1 = sigmoid(z1)
    z2 = np.dot(a1, w2) + b2
    a2 = sigmoid(z2)
    return int(np.round(a2)[0])




# -----------------------------------------------------------------------

# TEST

# 학습 완료 후 예측
input_example = np.array([0, 1])
prediction = predict(input_example)
print("Input:", input_example)
print("Prediction:", prediction)



# 레이어 구조도 출력 

# 그래프 생성
graph = Digraph(format='png', engine='dot')
graph.node('Input0', 'Input 0')
graph.node('Input1', 'Input 1')
graph.node('Hidden0', 'Hidden 0')
graph.node('Hidden1', 'Hidden 1')
graph.node('Output', 'Output')
graph.node('Bias1', 'Bias 1')
graph.node('Bias2', 'Bias 2')

# 그래프 속성 설정
graph.attr(rankdir='LR')  # 좌에서 우로 방향 설정

# 입력 노드와 히든 노드 연결
graph.edge('Input0', 'Hidden0', label='w1[0]')
graph.edge('Input0', 'Hidden1', label='w1[1]')
graph.edge('Input1', 'Hidden0', label='w1[2]')
graph.edge('Input1', 'Hidden1', label='w1[3]')

# 히든 노드와 출력 노드 연결
graph.edge('Hidden0', 'Output', label='w2[0]')
graph.edge('Hidden1', 'Output', label='w2[1]')

# 바이어스 노드와 히든 노드 연결
graph.edge('Bias1', 'Hidden0', label='b1[0]')
graph.edge('Bias1', 'Hidden1', label='b1[1]')
graph.edge('Bias2', 'Output', label='b2[0]')


# 그래프 시각화 및 출력
graph.view()

 

 

 

반응형

'개발 > AI,ML,ALGORITHM' 카테고리의 다른 글

Tic-Tac-Toe 게임 제작 (2/4) - alpha–beta pruning  (0) 2023.09.12
Tic-Tac-Toe 게임 제작 (1/4) - minimax  (0) 2023.09.12
SARSA  (0) 2023.08.28
Q-learning  (0) 2023.08.28
MNIST - TensorFlowLite  (0) 2023.07.19
블로그 이미지

SKY STORY

,
반응형

python에서 신경망 xor 연산 학습 샘플을 만들어 보았다.

# neural network xor


import math
import random
from datetime import datetime

import matplotlib.pyplot as plt
import numpy as np

# 네트워크의 학습 속도
LEARNING_RATE = 1.414213562

MOMENTUM = 0.25

# 훈련 데이타
TRAINING_DATA = [
    [1.0, 0.0],
    [1.0, 1.0],
    [0.0, 1.0],
    [0.0, 0.0]
]

# 타겟 값
TARGET_DATA = [
    1.0, 
    0.0, 
    1.0, 
    0.0
]

MAX_LAYERS = 4
MAX_WEIGHTS = 9
MAX_EPOCHS = 10000 

# 가중치
weights = [0. for i in range(MAX_WEIGHTS)] # [0] * 9
gradients = [0. for i in range(MAX_WEIGHTS)] # [0] * 9
error = [0. for i in range(MAX_LAYERS)] # [0] * 4  #error = np.zeros(4, dtype='f')

update_weights = [0. for i in range(MAX_WEIGHTS)] # [0] * 9
prev_weight_update = [0. for i in range(MAX_WEIGHTS)] # [0] * 9
rmse_array_error = [0. for i in range(MAX_EPOCHS)] # [0] * 10000  # 각 세대별 RMSE 에러 값

bias1 = 1.0
bias2 = 1.0
bias3 = 1.0
h1 = 0.0
h2 = 0.0
output_neuron = 0.0
derivative_O1 = 0.0
derivative_h1 = 0.0
derivative_h2 = 0.0
sum_output = 0.0
sum_h1 = 0.0
sum_h2 = 0.0


# sum_output
graph_sum_output = [[0. for i in range(MAX_EPOCHS)] for j in range(MAX_LAYERS)]

# 그래프 출력을 위한 버퍼 
graph_derivative_O1 = [[0. for i in range(MAX_EPOCHS)] for j in range(MAX_LAYERS)]
graph_derivative_h1 = [[0. for i in range(MAX_EPOCHS)] for j in range(MAX_LAYERS)]
graph_derivative_h2 = [[0. for i in range(MAX_EPOCHS)] for j in range(MAX_LAYERS)]



'''
                bias1   bias3
                  |      |
                  w4     w8
                  |      |
 input1 --w0 --- h1      |
        \       /  \     |
         \     /    w6   |
          w1  /      \   |
            \/         output
            /\        /
          w2  \      w7
          /    \    /
         /      \  /
 input2 --w3----- h2
                  |
                  w5
                  |
                bias2
'''


def sigmoid_function(x) :
    sigmoid = 1.0 / ( 1.0 + np.exp(-x) )
    return sigmoid

# 변수 초기화 
def initialize():
    global prev_weight_update, update_weights, gradients, error, rmse_array_error
    for i in range(MAX_WEIGHTS):
        prev_weight_update[i] = 0.0
        update_weights[i] = 0.0
        gradients[i] = 0.0
    for i in range(MAX_LAYERS):
        error[i] = 0.0
    for i in range(MAX_EPOCHS):
        rmse_array_error[i] = 0.0

def generate_weights() :
    global weights
    for i in range(MAX_WEIGHTS):
        weights[i] = random.uniform(-1.0, 1.0)
        print("weight[",i,"] = ", weights[i])

def train_neural_net() :
    global rmse_array_error, error
    # 세대(학습 횟수)
    epoch = 0
    while epoch < MAX_EPOCHS :
        for i in range(MAX_LAYERS):
            calc_hidden_layers(i)
            calc_output_neuron()
            graph_sum_output[i][epoch] = sum_output
            calc_error(i)
            calc_derivatives(i)
            graph_derivative_O1[i][epoch] = derivative_O1
            graph_derivative_h1[i][epoch] = derivative_h1
            graph_derivative_h2[i][epoch] = derivative_h2
            calc_gradients(i)
            calc_updates()

        # RMSE 에러 값
        sum = math.pow(error[0], 2) + math.pow(error[1], 2) + math.pow(error[2], 2) + math.pow(error[3], 2)
        rmse_error = math.sqrt( sum / MAX_LAYERS )
        print("RMSE error: ", rmse_error)
        rmse_array_error[epoch] = rmse_error

        # 세대        
        epoch = epoch + 1
        print("epoch:", epoch)

        
        # 예외 처리 - 처음부터 다시 
        if epoch > 4000 and rmse_error > 0.3:
            epoch = 0
            initialize()
            generate_weights()


def calc_hidden_layers(x):
    global sum_h1, sum_h2, h1, h2, weights, bias1, bias2
    sum_h1 = (TRAINING_DATA[x][0] * weights[0]) + (TRAINING_DATA[x][1] * weights[2]) + (bias1 * weights[4])
    sum_h2 = (TRAINING_DATA[x][0] * weights[1]) + (TRAINING_DATA[x][1] * weights[3]) + (bias2 * weights[5])
    h1 = sigmoid_function(sum_h1)
    h2 = sigmoid_function(sum_h2)

def calc_output_neuron():
    global sum_output, h1, h2, weights, bias3, output_neuron
    sum_output = (h1 * weights[6]) + (h2 * weights[7]) + (bias3 * weights[8])
    output_neuron = sigmoid_function(sum_output)

def calc_error(x):
    global error, output_neuron
    error[x] = output_neuron - TARGET_DATA[x]

def calc_derivatives(x):
    global derivative_O1, derivative_h1, derivative_h2, sum_h1, sum_h2, weights, sum_output, error
    derivative_O1 = -error[x] * ( np.exp(sum_output) / math.pow((1 + np.exp(sum_output)), 2) )
    derivative_h1 = ( np.exp(sum_h1) / math.pow((1 + np.exp(sum_h1)), 2) ) * weights[6] * derivative_O1
    derivative_h2 = ( np.exp(sum_h2) / math.pow((1 + np.exp(sum_h2)), 2) ) * weights[7] * derivative_O1

def calc_gradients(x):
    global gradients, derivative_O1, derivative_h1, derivative_h2, h1, h2, bias1, bias2,bias3
    gradients[0] = sigmoid_function(TRAINING_DATA[x][0]) * derivative_h1
    gradients[1] = sigmoid_function(TRAINING_DATA[x][0]) * derivative_h2
    gradients[2] = sigmoid_function(TRAINING_DATA[x][1]) * derivative_h1
    gradients[3] = sigmoid_function(TRAINING_DATA[x][1]) * derivative_h2
    gradients[4] = sigmoid_function(bias1) * derivative_h1
    gradients[5] = sigmoid_function(bias2) * derivative_h2
    gradients[6] = h1 * derivative_O1
    gradients[7] = h2 * derivative_O1
    gradients[8] = sigmoid_function(bias3) * derivative_O1

def calc_updates():
    global update_weights, gradients, prev_weight_update
    for i in range(MAX_WEIGHTS):
        update_weights[i] = (LEARNING_RATE * gradients[i]) + (MOMENTUM * prev_weight_update[i])
        prev_weight_update[i] = update_weights[i]
        weights[i] = weights[i] + update_weights[i]


def save_data():
    global rmse_array_error, weights
    with open('errorData1.txt', 'w', encoding='utf-8') as f:
        for i in range(MAX_EPOCHS):
            line = '%d   %s' % (i, rmse_array_error[i])
            f.write(line) # f.write('\n'.join(lines))
            f.write('\n') # f.writelines('\n')
    
    with open('weight_data1.txt', 'w', encoding='utf-8') as f:
        for i in range(MAX_WEIGHTS):
            line = '%d   %s' % (i, weights[i])
            f.write(line)
            f.write('\n')

def start_input():
    global weights, sum_h1, sum_h2, h1, h2, bias1, bias2, bias3, sum_output, output_neuron

    choice = 'y'
    while True:
        if choice == 'Y' or choice == 'y':
            data1 = input("enter data 1: ")
            if data1.isnumeric() == False :
                continue
            data2 = input("enter data 2: ")
            if data2.isnumeric() == False :
                continue

            sum_h1 = (float(data1) * weights[0]) + (float(data2) * weights[2]) + (bias1 * weights[4])
            sum_h2 = (float(data1) * weights[1]) + (float(data2) * weights[3]) + (bias2 * weights[5])
            h1 = sigmoid_function(sum_h1)
            h2 = sigmoid_function(sum_h2)
            
            sum_output = (h1 * weights[6]) + (h2 * weights[7]) + (bias3 * weights[8])
            output_neuron = sigmoid_function(sum_output)
            print('output = ', output_neuron)

            choice = input('Again? (y/n) : ')
        else:
            print('exit')
            break




initialize()
generate_weights()
train_neural_net()

save_data()
start_input()







# ===============================================================

# sigmoid
x = np.arange( -10.0, 10.0, 0.1)
y = 1.0 / (1.0 + np.exp(-x))
plt.subplot(2, 3, 1)                
plt.plot(x,y, 'r-')#plt.plot(x1, y1, 'r--', x2, y2, 'bs', x3, y3, 'g^')
plt.title('sigmoid')# 1.0 / (1.0 + np.exp(-x))
plt.axis([-10.0, 10.0, 0, 1.0])# xmin, xmax, ymin, ymax
plt.xlabel('x')
plt.ylabel('y')

# sum_output
x2 = np.arange( 0.0, 10000.0, 1.0)
y2 = graph_sum_output[0]
plt.subplot(2, 3, 2)               
plt.plot(x2,y2, 'r-')#plt.plot(x1, y1, 'r--', x2, y2, 'bs', x3, y3, 'g^')
plt.title('sum_output')
plt.axis([0.0, 10000.0, -0.2, 5.0])# xmin, xmax, ymin, ymax
plt.xlabel('epoch')
plt.ylabel('sum_output')

# rmse_array_error
x2 = np.arange( 0.0, 10000.0, 1.0)
y2 = rmse_array_error
plt.subplot(2, 3, 3)               
plt.plot(x2,y2, 'r-')#plt.plot(x1, y1, 'r--', x2, y2, 'bs', x3, y3, 'g^')
plt.title('RMSE Error')
plt.axis([0.0, 10000.0, 0.0, 1.0])# xmin, xmax, ymin, ymax
plt.xlabel('epoch')
plt.ylabel('RMSE error')


# derivative_O1
x3 = np.arange( 0.0, 10000.0, 1.0)
y3 = graph_derivative_O1[0] 
plt.subplot(2, 3, 4)              
plt.plot(x3,y3, 'r-')#plt.plot(x1, y1, 'r--', x2, y2, 'bs', x3, y3, 'g^')
plt.title('derivative_O1')
plt.axis([0.0, 10000.0, -0.05, 0.15])# xmin, xmax, ymin, ymax
plt.xlabel('epoch')
plt.ylabel('derivative_O1')

# derivative_h1
x4 = np.arange( 0.0, 10000.0, 1.0)
y4 = graph_derivative_h1[0]
plt.subplot(2, 3, 5)                
plt.plot(x4,y4, 'r-')#plt.plot(x1, y1, 'r--', x2, y2, 'bs', x3, y3, 'g^')
plt.title('derivative_h1')
plt.axis([0.0, 10000.0, -0.05, 0.15])# xmin, xmax, ymin, ymax
plt.xlabel('epoch')
plt.ylabel('derivative_h1')

# derivative_h2
x5 = np.arange( 0.0, 10000.0, 1.0)
y5 = graph_derivative_h2[0]
plt.subplot(2, 3, 6)                
plt.plot(x5,y5, 'r-')#plt.plot(x1, y1, 'r--', x2, y2, 'bs', x3, y3, 'g^')
plt.title('derivative_h2')
plt.axis([0.0, 10000.0, -0.05,0.15])# xmin, xmax, ymin, ymax
plt.xlabel('epoch')
plt.ylabel('derivative_h2')


fig1 = plt.gcf()
plt.tight_layout()
plt.show()
plt.draw()
fig1.savefig('nn_xor_derivative.png', dpi=200, facecolor='#eeeeee', edgecolor='blue')


결과 그래프는 다음과 같다.


#----------------------------------------------------------------
weight_data1.txt

0 -4.749828824761969
1 -3.5287652884908254
2 -4.747508485076842
3 -3.5276048615858935
4 1.816578868741784
5 5.375092217625854
6 -13.742230835984616
7 13.712746773928748
8 -6.530714643755955



#----------------------------------------------------------------
errorData1.txt

0 0.5424391889837473
1 0.5331220459189032
2 0.5304319567906218

10 0.5274519675428608

100 0.5198658296518869

200 0.5155776076419263

300 0.5046587144670703

400 0.4791696883760997

1000 0.09849463249517668

2000 0.03296842320700676

3000 0.02307589090605272

9999 0.010292985691909057



반응형

'개발 > AI,ML,ALGORITHM' 카테고리의 다른 글

MNIST 데이터셋을 이미지 파일로 복원  (0) 2023.07.19
MNIST 데이터셋 다운로드  (0) 2023.07.19
2D 충돌처리  (0) 2020.12.12
Generic algorithm  (0) 2020.05.19
neural network  (0) 2020.05.19
블로그 이미지

SKY STORY

,